1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
//! This crate contains a general request-response protocol. It is used to send requests to
//! a set of recipients and wait for responses.
use std::{
collections::HashMap,
marker::PhantomData,
sync::{Arc, Weak},
time::{Duration, Instant},
};
use anyhow::{anyhow, Context, Result};
use data_source::DataSource;
use derive_builder::Builder;
use derive_more::derive::Deref;
use hotshot_types::traits::signature_key::SignatureKey;
use message::{Message, RequestMessage, ResponseMessage};
use network::{Bytes, Receiver, Sender};
use parking_lot::RwLock;
use rand::seq::SliceRandom;
use recipient_source::RecipientSource;
use request::{Request, Response};
use tokio::{
spawn,
time::{sleep, timeout},
};
use tokio_util::task::AbortOnDropHandle;
use tracing::{error, warn};
use util::BoundedVecDeque;
/// The data source trait. Is what we use to derive the response data for a request
pub mod data_source;
/// The message type. Is the base type for all messages in the request-response protocol
pub mod message;
/// The network traits. Is what we use to send and receive messages over the network as
/// the protocol
pub mod network;
/// The recipient source trait. Is what we use to get the recipients that a specific message should
/// expect responses from
pub mod recipient_source;
/// The request trait. Is what we use to define a request and a corresponding response type
pub mod request;
/// Utility types and functions
mod util;
/// A type alias for the hash of a request
pub type RequestHash = blake3::Hash;
/// A type alias for the active request map
pub type ActiveRequestsMap<Req> = Arc<RwLock<HashMap<RequestHash, Weak<ActiveRequestInner<Req>>>>>;
/// A type alias for the list of tasks that are responding to requests
pub type OutgoingResponses = BoundedVecDeque<AbortOnDropHandle<()>>;
/// A type alias for the list of tasks that are validating incoming responses
pub type IncomingResponses = BoundedVecDeque<AbortOnDropHandle<()>>;
/// The errors that can occur when making a request for data
#[derive(thiserror::Error, Debug)]
pub enum RequestError {
/// The request timed out
#[error("request timed out")]
Timeout,
/// The request was invalid
#[error("request was invalid")]
InvalidRequest(anyhow::Error),
/// Other errors
#[error("other error")]
Other(anyhow::Error),
}
/// A trait for serializing and deserializing a type to and from a byte array. [`Request`] types and
/// [`Response`] types will need to implement this trait
pub trait Serializable: Sized {
/// Serialize the type to a byte array. If this is for a [`Request`] and your [`Request`] type
/// is represented as an enum, please make sure that you serialize it with a unique type ID. Otherwise,
/// you may end up with collisions as the request hash is used as a unique identifier
///
/// # Errors
/// - If the type cannot be serialized to a byte array
fn to_bytes(&self) -> Result<Vec<u8>>;
/// Deserialize the type from a byte array
///
/// # Errors
/// - If the byte array is not a valid representation of the type
fn from_bytes(bytes: &[u8]) -> Result<Self>;
}
/// The underlying configuration for the request-response protocol
#[derive(Clone, Builder)]
pub struct RequestResponseConfig {
/// The timeout for incoming requests. Do not respond to a request after this threshold
/// has passed.
incoming_request_ttl: Duration,
/// The maximum amount of time we will spend trying to both derive a response for a request and
/// send the response over the wire.
response_send_timeout: Duration,
/// The maximum amount of time we will spend trying to validate a response. This is used to prevent
/// an attack where a malicious participant sends us a bunch of requests that take a long time to
/// validate.
response_validate_timeout: Duration,
/// The batch size for outgoing requests. This is the number of request messages that we will
/// send out at a time for a single request before waiting for the [`request_batch_interval`].
request_batch_size: usize,
/// The time to wait (per request) between sending out batches of request messages
request_batch_interval: Duration,
/// The maximum (global) number of outgoing responses that can be in flight at any given time
max_outgoing_responses: usize,
/// The maximum (global) number of incoming responses that can be processed at any given time.
/// We need this because responses coming in need to be validated [asynchronously] that they
/// satisfy the request they are responding to
max_incoming_responses: usize,
}
/// A protocol that allows for request-response communication. Is cheaply cloneable, so there is no
/// need to wrap it in an `Arc`
#[derive(Clone, Deref)]
pub struct RequestResponse<
S: Sender<K>,
R: Receiver,
Req: Request,
RS: RecipientSource<K>,
DS: DataSource<Req>,
K: SignatureKey + 'static,
> {
#[deref]
/// The inner implementation of the request-response protocol
inner: Arc<RequestResponseInner<S, R, Req, RS, DS, K>>,
/// A handle to the receiving task. This will automatically get cancelled when the protocol is dropped
_receiving_task_handle: Arc<AbortOnDropHandle<()>>,
}
impl<
S: Sender<K>,
R: Receiver,
Req: Request,
RS: RecipientSource<K>,
DS: DataSource<Req>,
K: SignatureKey + 'static,
> RequestResponse<S, R, Req, RS, DS, K>
{
/// Create a new [`RequestResponseProtocol`]
pub fn new(
// The configuration for the protocol
config: RequestResponseConfig,
// The network sender that [`RequestResponseProtocol`] will use to send messages
sender: S,
// The network receiver that [`RequestResponseProtocol`] will use to receive messages
receiver: R,
// The recipient source that [`RequestResponseProtocol`] will use to get the recipients
// that a specific message should expect responses from
recipient_source: RS,
// The [response] data source that [`RequestResponseProtocol`] will use to derive the
// response data for a specific request
data_source: DS,
) -> Self {
// Create the active requests map
let active_requests = ActiveRequestsMap::default();
// Create the inner implementation
let inner = Arc::new(RequestResponseInner {
config,
sender,
recipient_source,
data_source,
active_requests,
phantom_data: PhantomData,
});
// Start the task that receives messages and handles them. This will automatically get cancelled
// when the protocol is dropped
let inner_clone = Arc::clone(&inner);
let receive_task_handle =
AbortOnDropHandle::new(tokio::spawn(inner_clone.receiving_task(receiver)));
// Return the protocol
Self {
inner,
_receiving_task_handle: Arc::new(receive_task_handle),
}
}
}
/// The inner implementation for the request-response protocol
pub struct RequestResponseInner<
S: Sender<K>,
R: Receiver,
Req: Request,
RS: RecipientSource<K>,
DS: DataSource<Req>,
K: SignatureKey + 'static,
> {
/// The configuration of the protocol
config: RequestResponseConfig,
/// The sender to use for the protocol
sender: S,
/// The recipient source to use for the protocol
recipient_source: RS,
/// The data source to use for the protocol
data_source: DS,
/// The map of currently active requests
active_requests: ActiveRequestsMap<Req>,
/// Phantom data to help with type inference
phantom_data: PhantomData<(K, R, Req, DS)>,
}
impl<
S: Sender<K>,
R: Receiver,
Req: Request,
RS: RecipientSource<K>,
DS: DataSource<Req>,
K: SignatureKey + 'static,
> RequestResponseInner<S, R, Req, RS, DS, K>
{
/// Request something from the protocol indefinitely until we get a response
/// or there was a critical error (e.g. the request could not be signed)
///
/// # Errors
/// - If the request was invalid
/// - If there was a critical error (e.g. the channel was closed)
pub async fn request_indefinitely(
self: &Arc<Self>,
public_key: &K,
private_key: &K::PrivateKey,
// The estimated TTL of other participants. This is used to decide when to
// stop making requests and sign a new one
estimated_request_ttl: Duration,
// The request to make
request: Req,
) -> std::result::Result<Req::Response, RequestError> {
loop {
// Sign a request message
let request_message = RequestMessage::new_signed(public_key, private_key, &request)
.map_err(|e| {
RequestError::InvalidRequest(anyhow::anyhow!(
"failed to sign request message: {e}"
))
})?;
// Request the data, handling the errors appropriately
match self.request(request_message, estimated_request_ttl).await {
Ok(response) => return Ok(response),
Err(RequestError::Timeout) => continue,
Err(e) => return Err(e),
}
}
}
/// Request something from the protocol and wait for the response. This function
/// will join with an existing request for the same data (determined by `Blake3` hash),
/// however both will make requests until the timeout is reached
///
/// # Errors
/// - If the request times out
/// - If the channel is closed (this is an internal error)
/// - If the request we sign is invalid
pub async fn request(
self: &Arc<Self>,
request_message: RequestMessage<Req, K>,
timeout_duration: Duration,
) -> std::result::Result<Req::Response, RequestError> {
timeout(timeout_duration, async move {
// Calculate the hash of the request
let request_hash = blake3::hash(&request_message.request.to_bytes().map_err(|e| {
RequestError::InvalidRequest(anyhow::anyhow!(
"failed to serialize request message: {e}"
))
})?);
let request = {
// Get a write lock on the active requests map
let mut active_requests_write = self.active_requests.write();
// Conditionally get the active request, creating a new one if it doesn't exist or if
// the existing one has been dropped and not yet removed
if let Some(active_request) = active_requests_write
.get(&request_hash)
.and_then(Weak::upgrade)
{
ActiveRequest(active_request)
} else {
// Create a new broadcast channel for the response
let (sender, receiver) = async_broadcast::broadcast(1);
// Create a new active request
let active_request = ActiveRequest(Arc::new(ActiveRequestInner {
sender,
receiver,
request: request_message.request.clone(),
active_requests: Arc::clone(&self.active_requests),
request_hash,
}));
// Write the new active request to the map
active_requests_write.insert(request_hash, Arc::downgrade(&active_request.0));
// Return the new active request
active_request
}
};
// Get the recipients that the request should expect responses from. Shuffle them so
// that we don't always send to the same recipients in the same order
let mut recipients = self
.recipient_source
.get_recipients_for(&request_message.request)
.await;
recipients.shuffle(&mut rand::thread_rng());
// Create a request message and serialize it
let message =
Bytes::from(Message::Request(request_message).to_bytes().map_err(|e| {
RequestError::InvalidRequest(anyhow::anyhow!(
"failed to serialize request message: {e}"
))
})?);
// Get the current time so we can check when the timeout has elapsed
let start_time = Instant::now();
// Spawn a task that sends out requests to the network
let self_clone = Arc::clone(self);
let _handle = AbortOnDropHandle::new(spawn(async move {
// Create a bounded queue for the outgoing requests. We use this to make sure
// we have less than [`config.request_batch_size`] requests in flight at any time.
//
// When newer requests are added, older ones are removed from the queue. Because we use
// `AbortOnDropHandle`, the older ones will automatically get cancelled
let mut outgoing_requests =
BoundedVecDeque::new(self_clone.config.request_batch_size);
// While the timeout hasn't elapsed, send out requests to the network
while start_time.elapsed() < timeout_duration {
// Send out requests to the network in their own separate tasks
for recipient_batch in recipients.chunks(self_clone.config.request_batch_size) {
for recipient in recipient_batch {
// Clone ourselves, the message, and the recipient so they can be moved
let self_clone = Arc::clone(&self_clone);
let recipient_clone = recipient.clone();
let message_clone = Arc::clone(&message);
// Spawn the task that sends the request to the participant
let individual_sending_task = spawn(async move {
let _ = self_clone
.sender
.send_message(&message_clone, recipient_clone)
.await;
});
// Add the sending task to the queue
outgoing_requests.push(AbortOnDropHandle::new(individual_sending_task));
}
// After we send the batch out, wait the [`config.request_batch_interval`]
// before sending the next one
sleep(self_clone.config.request_batch_interval).await;
}
}
}));
// Wait for a response on the channel
request
.receiver
.clone()
.recv()
.await
.map_err(|_| RequestError::Other(anyhow!("channel was closed")))
})
.await
.map_err(|_| RequestError::Timeout)
.and_then(|result| result)
}
/// The task responsible for receiving messages from the receiver and handling them
async fn receiving_task(self: Arc<Self>, mut receiver: R) {
// Upper bound the number of outgoing and incoming responses
let mut outgoing_responses = BoundedVecDeque::new(self.config.max_outgoing_responses);
let mut incoming_responses = BoundedVecDeque::new(self.config.max_incoming_responses);
// While the receiver is open, we receive messages and handle them
loop {
// Try to receive a message
match receiver.receive_message().await {
Ok(message) => {
// Deserialize the message, warning if it fails
let message = match Message::from_bytes(&message) {
Ok(message) => message,
Err(e) => {
warn!("Received invalid message: {e}");
continue;
}
};
// Handle the message based on its type
match message {
Message::Request(request_message) => {
self.handle_request(request_message, &mut outgoing_responses);
}
Message::Response(response_message) => {
self.handle_response(response_message, &mut incoming_responses);
}
}
}
// An error here means the receiver will _NEVER_ receive any more messages
Err(e) => {
error!("Request/response receive task exited: {e}");
return;
}
}
}
}
/// Handle a request sent to us
fn handle_request(
self: &Arc<Self>,
request_message: RequestMessage<Req, K>,
outgoing_responses: &mut OutgoingResponses,
) {
// Spawn a task to:
// - Validate the request
// - Derive the response data (check if we have it)
// - Send the response to the requester
let self_clone = Arc::clone(self);
let response_task = AbortOnDropHandle::new(tokio::spawn(async move {
let result = timeout(self_clone.config.response_send_timeout, async move {
// Validate the request message. This includes:
// - Checking the signature and making sure it's valid
// - Checking the timestamp and making sure it's not too old
// - Calling the request's application-specific validation function
request_message
.validate(self_clone.config.incoming_request_ttl)
.await
.with_context(|| "failed to validate request")?;
// Try to fetch the response data from the data source
let response = self_clone
.data_source
.derive_response_for(&request_message.request)
.await
.with_context(|| "failed to derive response for request")?;
// Create the response message and serialize it
let response = Bytes::from(
Message::Response::<Req, K>(ResponseMessage {
request_hash: blake3::hash(&request_message.request.to_bytes()?),
response,
})
.to_bytes()
.with_context(|| "failed to serialize response message")?,
);
// Send the response to the requester
self_clone
.sender
.send_message(&response, request_message.public_key)
.await
.with_context(|| "failed to send response to requester")?;
Ok::<(), anyhow::Error>(())
})
.await
.map_err(|_| anyhow::anyhow!("timed out while sending response"))
.and_then(|result| result);
if let Err(e) = result {
warn!("Failed to send response to requester: {e}");
}
}));
// Add the response task to the outgoing responses queue. This will automatically cancel an older task
// if there are more than [`config.max_outgoing_responses`] responses in flight.
outgoing_responses.push(response_task);
}
/// Handle a response sent to us
fn handle_response(
self: &Arc<Self>,
response: ResponseMessage<Req>,
incoming_responses: &mut IncomingResponses,
) {
// Get the entry in the map, ignoring it if it doesn't exist
let Some(active_request) = self
.active_requests
.read()
.get(&response.request_hash)
.cloned()
.and_then(|r| r.upgrade())
else {
return;
};
// Spawn a task to validate the response and send it to the requester (us)
let response_validate_timeout = self.config.response_validate_timeout;
let response_task = AbortOnDropHandle::new(tokio::spawn(async move {
if timeout(response_validate_timeout, async move {
// Make sure the response is valid for the given request
if let Err(e) = response.response.validate(&active_request.request).await {
warn!("Received invalid response: {e}");
return;
}
// Send the response to the requester (the user of [`RequestResponse::request`])
let _ = active_request.sender.try_broadcast(response.response);
})
.await
.is_err()
{
warn!("Timed out while validating response");
}
}));
// Add the response task to the incoming responses queue. This will automatically cancel an older task
// if there are more than [`config.max_incoming_responses`] responses being processed
incoming_responses.push(response_task);
}
}
/// An active request. This is what we use to track a request and its corresponding response
/// in the protocol
#[derive(Clone, Deref)]
pub struct ActiveRequest<R: Request>(Arc<ActiveRequestInner<R>>);
/// The inner implementation of an active request
pub struct ActiveRequestInner<R: Request> {
/// The sender to use for the protocol
sender: async_broadcast::Sender<R::Response>,
/// The receiver to use for the protocol
receiver: async_broadcast::Receiver<R::Response>,
/// The request that we are waiting for a response to
request: R,
/// A copy of the map of currently active requests
active_requests: ActiveRequestsMap<R>,
/// The hash of the request. We need this so we can remove ourselves from the map
request_hash: RequestHash,
}
impl<R: Request> Drop for ActiveRequestInner<R> {
fn drop(&mut self) {
self.active_requests.write().remove(&self.request_hash);
}
}
#[cfg(test)]
mod tests {
use std::{
collections::HashMap,
sync::{atomic::AtomicBool, Mutex},
};
use async_trait::async_trait;
use hotshot_types::signature_key::{BLSPrivKey, BLSPubKey};
use rand::Rng;
use tokio::{sync::mpsc, task::JoinSet};
use super::*;
/// This test makes sure that when all references to an active request are dropped, it is
/// removed from the active requests map
#[test]
fn test_active_request_drop() {
// Create an active requests map
let active_requests = ActiveRequestsMap::default();
// Create an active request
let (sender, receiver) = async_broadcast::broadcast(1);
let active_request = ActiveRequest(Arc::new(ActiveRequestInner {
sender,
receiver,
request: TestRequest(vec![1, 2, 3]),
active_requests: Arc::clone(&active_requests),
request_hash: blake3::hash(&[1, 2, 3]),
}));
// Insert the active request into the map
active_requests.write().insert(
active_request.request_hash,
Arc::downgrade(&active_request.0),
);
// Clone the active request
let active_request_clone = active_request.clone();
// Drop the active request
drop(active_request);
// Make sure nothing has been removed
assert_eq!(active_requests.read().len(), 1);
// Drop the clone
drop(active_request_clone);
// Make sure it has been removed
assert_eq!(active_requests.read().len(), 0);
}
/// A test sender that has a list of all the participants in the network
#[derive(Clone)]
pub struct TestSender {
network: Arc<HashMap<BLSPubKey, mpsc::Sender<Bytes>>>,
}
/// An implementation of the [`Sender`] trait for the [`TestSender`] type
#[async_trait]
impl Sender<BLSPubKey> for TestSender {
async fn send_message(&self, message: &Bytes, recipient: BLSPubKey) -> Result<()> {
self.network
.get(&recipient)
.ok_or(anyhow::anyhow!("recipient not found"))?
.send(Arc::clone(message))
.await
.map_err(|_| anyhow::anyhow!("failed to send message"))?;
Ok(())
}
}
// Implement the [`RecipientSource`] trait for the [`TestSender`] type
#[async_trait]
impl RecipientSource<BLSPubKey> for TestSender {
async fn get_recipients_for<R: Request>(&self, _request: &R) -> Vec<BLSPubKey> {
// Get all the participants in the network
self.network.keys().copied().collect()
}
}
// Create a test request that is just some bytes
#[derive(Clone, Debug)]
struct TestRequest(Vec<u8>);
// Implement the [`Serializable`] trait for the [`TestRequest`] type
impl Serializable for TestRequest {
fn to_bytes(&self) -> Result<Vec<u8>> {
Ok(self.0.clone())
}
fn from_bytes(bytes: &[u8]) -> Result<Self> {
Ok(TestRequest(bytes.to_vec()))
}
}
// Implement the [`Request`] trait for the [`TestRequest`] type
#[async_trait]
impl Request for TestRequest {
type Response = Vec<u8>;
async fn validate(&self) -> Result<()> {
Ok(())
}
}
// Implement the [`Response`] trait for the [`TestRequest`] type
#[async_trait]
impl Response<TestRequest> for Vec<u8> {
async fn validate(&self, _request: &TestRequest) -> Result<()> {
Ok(())
}
}
// Create a test data source that pretends to have the data or not
#[derive(Clone)]
struct TestDataSource {
/// Whether we have the data or not
has_data: bool,
/// The time at which the data will be available if we have it
data_available_time: Instant,
/// Whether or not the data will be taken once served
take_data: bool,
/// Whether or not the data has been taken
taken: Arc<AtomicBool>,
}
#[async_trait]
impl DataSource<Vec<u8>> for TestDataSource {
async fn derive_response_for(&self, request: &Vec<u8>) -> Result<Vec<u8>> {
// Return a response if we hit the hit rate
if self.has_data && Instant::now() >= self.data_available_time {
if self.take_data && !self.taken.swap(true, std::sync::atomic::Ordering::Relaxed) {
return Err(anyhow::anyhow!("data already taken"));
}
Ok(blake3::hash(request).as_bytes().to_vec())
} else {
Err(anyhow::anyhow!("did not have the data"))
}
}
}
/// Create and return a default protocol configuration
fn default_protocol_config() -> RequestResponseConfig {
RequestResponseConfigBuilder::create_empty()
.incoming_request_ttl(Duration::from_secs(40))
.response_send_timeout(Duration::from_secs(40))
.request_batch_size(10)
.request_batch_interval(Duration::from_millis(100))
.max_outgoing_responses(10)
.response_validate_timeout(Duration::from_secs(1))
.max_incoming_responses(5)
.build()
.expect("failed to build config")
}
/// Create fully connected test networks with `num_participants` participants
fn create_participants(
num: usize,
) -> Vec<(TestSender, mpsc::Receiver<Bytes>, (BLSPubKey, BLSPrivKey))> {
// The entire network
let mut network = HashMap::new();
// All receivers in the network
let mut receivers = Vec::new();
// All keypairs in the network
let mut keypairs = Vec::new();
// For each participant,
for i in 0..num {
// Create a unique `BLSPubKey`
let (public_key, private_key) =
BLSPubKey::generated_from_seed_indexed([2; 32], i.try_into().unwrap());
// Add the keypair to the list
keypairs.push((public_key, private_key));
// Create a channel for sending and receiving messages
let (sender, receiver) = mpsc::channel::<Bytes>(100);
// Add the participant to the network
network.insert(public_key, sender);
// Add the receiver to the list of receivers
receivers.push(receiver);
}
// Create a test sender from the network
let sender = TestSender {
network: Arc::new(network),
};
// Return all senders and receivers
receivers
.into_iter()
.zip(keypairs)
.map(|(r, k)| (sender.clone(), r, k))
.collect()
}
/// The configuration for an integration test
#[derive(Clone)]
struct IntegrationTestConfig {
/// The request response protocol configuration
request_response_config: RequestResponseConfig,
/// The number of participants in the network
num_participants: usize,
/// The number of participants that have the data
num_participants_with_data: usize,
/// The timeout for the requests
request_timeout: Duration,
/// The delay before the nodes have the data available
data_available_delay: Duration,
}
/// The result of an integration test
struct IntegrationTestResult {
/// The number of nodes that received a response
num_succeeded: usize,
}
/// Run an integration test with the given parameters
async fn run_integration_test(config: IntegrationTestConfig) -> IntegrationTestResult {
// Create a fully connected network with `num_participants` participants
let participants = create_participants(config.num_participants);
// Create a join set to wait for all the tasks to finish
let mut join_set = JoinSet::new();
// We need to keep these here so they don't get dropped
let handles = Arc::new(Mutex::new(Vec::new()));
// For each one, create a new [`RequestResponse`] protocol
for (i, (sender, receiver, (public_key, private_key))) in
participants.into_iter().enumerate()
{
let config_clone = config.request_response_config.clone();
let handles_clone = Arc::clone(&handles);
join_set.spawn(async move {
let protocol = RequestResponse::new(
config_clone,
sender.clone(),
receiver,
sender,
TestDataSource {
has_data: i < config.num_participants_with_data,
data_available_time: Instant::now() + config.data_available_delay,
take_data: false,
taken: Arc::new(AtomicBool::new(false)),
},
);
// Add the handle to the handles list so it doesn't get dropped and
// cancelled
#[allow(clippy::used_underscore_binding)]
handles_clone
.lock()
.unwrap()
.push(Arc::clone(&protocol._receiving_task_handle));
// Create a random request
let request = vec![rand::thread_rng().gen(); 100];
// Get the hash of the request
let request_hash = blake3::hash(&request).as_bytes().to_vec();
// Create a new request message
let request = RequestMessage::new_signed(&public_key, &private_key, &request)
.expect("failed to create request message");
// Request the data from the protocol
let response = protocol.request(request, config.request_timeout).await?;
// Make sure the response is the hash of the request
assert_eq!(response, request_hash);
Ok::<(), anyhow::Error>(())
});
}
// Wait for all the tasks to finish
let mut num_succeeded = config.num_participants;
while let Some(result) = join_set.join_next().await {
if result.is_err() || result.unwrap().is_err() {
num_succeeded -= 1;
}
}
IntegrationTestResult { num_succeeded }
}
/// Test the integration of the protocol with 50% of the participants having the data
#[tokio::test(flavor = "multi_thread")]
async fn test_integration_50_0s() {
// Build a config
let config = IntegrationTestConfig {
request_response_config: default_protocol_config(),
num_participants: 100,
num_participants_with_data: 50,
request_timeout: Duration::from_secs(40),
data_available_delay: Duration::from_secs(0),
};
// Run the test, making sure all the requests succeed
let result = run_integration_test(config).await;
assert_eq!(result.num_succeeded, 100);
}
/// Test the integration of the protocol when nobody has the data. Make sure we don't
/// get any responses
#[tokio::test(flavor = "multi_thread")]
async fn test_integration_0() {
// Build a config
let config = IntegrationTestConfig {
request_response_config: default_protocol_config(),
num_participants: 100,
num_participants_with_data: 0,
request_timeout: Duration::from_secs(40),
data_available_delay: Duration::from_secs(0),
};
// Run the test
let result = run_integration_test(config).await;
// Make sure all the requests succeeded
assert_eq!(result.num_succeeded, 0);
}
/// Test the integration of the protocol when one node has the data after
/// a delay of 1s
#[tokio::test(flavor = "multi_thread")]
async fn test_integration_1_1s() {
// Build a config
let config = IntegrationTestConfig {
request_response_config: default_protocol_config(),
num_participants: 100,
num_participants_with_data: 1,
request_timeout: Duration::from_secs(40),
data_available_delay: Duration::from_secs(2),
};
// Run the test
let result = run_integration_test(config).await;
// Make sure all the requests succeeded
assert_eq!(result.num_succeeded, 100);
}
/// Test that we can join an existing request for the same data and get the same (single) response
#[tokio::test(flavor = "multi_thread")]
async fn test_join_existing_request() {
// Build a config
let config = default_protocol_config();
// Create two participants
let mut participants = Vec::new();
for (sender, receiver, (public_key, private_key)) in create_participants(2) {
// For each, create a new [`RequestResponse`] protocol
let protocol = RequestResponse::new(
config.clone(),
sender.clone(),
receiver,
sender,
TestDataSource {
take_data: true,
has_data: true,
data_available_time: Instant::now() + Duration::from_secs(2),
taken: Arc::new(AtomicBool::new(false)),
},
);
// Add the participants to the list
participants.push((protocol, public_key, private_key));
}
// Take the first participant
let one = Arc::new(participants.remove(0));
// Create the request that they should all be able to join on
let request = vec![rand::thread_rng().gen(); 100];
// Create a join set to wait for all the tasks to finish
let mut join_set = JoinSet::new();
// Make 10 requests with the same hash
for _ in 0..10 {
// Clone the first participant
let one_clone = Arc::clone(&one);
// Clone the request
let request_clone = request.clone();
// Spawn a task to request the data
join_set.spawn(async move {
// Create a new, signed request message
let request_message =
RequestMessage::new_signed(&one_clone.1, &one_clone.2, &request_clone)?;
// Start requesting it
one_clone
.0
.request(request_message, Duration::from_secs(20))
.await?;
Ok::<(), anyhow::Error>(())
});
}
// Wait for all the tasks to finish, making sure they all succeed
while let Some(result) = join_set.join_next().await {
result
.expect("failed to join task")
.expect("failed to request data");
}
}
}