1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// Copyright (c) 2021-2024 Espresso Systems (espressosys.com)
// This file is part of the HotShot repository.

// You should have received a copy of the MIT License
// along with the HotShot repository. If not, see <https://mit-license.org/>.

use std::{num::NonZeroUsize, sync::Arc, time::Duration};

use anyhow::Result;
use async_broadcast::{Receiver, Sender};
use async_lock::RwLock;
use async_trait::async_trait;
use futures::future::select_all;
use hotshot::{
    traits::TestableNodeImplementation,
    types::{Event, Message},
};
use hotshot_task_impls::{events::HotShotEvent, network::NetworkMessageTaskState};
use hotshot_types::{
    message::UpgradeLock,
    traits::{
        network::ConnectedNetwork,
        node_implementation::{NodeType, Versions},
    },
};
use tokio::{
    spawn,
    task::JoinHandle,
    time::{sleep, timeout},
};
use tracing::error;

use crate::test_runner::Node;

/// enum describing how the tasks completed
pub enum TestResult {
    /// the test task passed
    Pass,
    /// the test task failed with an error
    Fail(Box<dyn std::fmt::Debug + Send + Sync>),
}

#[async_trait]
/// Type for mutable task state that can be used as the state for a `Task`
pub trait TestTaskState: Send {
    /// Type of event sent and received by the task
    type Event: Clone + Send + Sync;

    /// Handles an event from one of multiple receivers.
    async fn handle_event(&mut self, (event, id): (Self::Event, usize)) -> Result<()>;

    /// Check the result of the test.
    async fn check(&self) -> TestResult;
}

/// Type alias for type-erased [`TestTaskState`] to be used for
/// dynamic dispatch
pub type AnyTestTaskState<TYPES> =
    Box<dyn TestTaskState<Event = hotshot_types::event::Event<TYPES>> + Send + Sync>;

#[async_trait]
impl<TYPES: NodeType> TestTaskState for AnyTestTaskState<TYPES> {
    type Event = Event<TYPES>;

    async fn handle_event(&mut self, event: (Self::Event, usize)) -> Result<()> {
        (**self).handle_event(event).await
    }

    async fn check(&self) -> TestResult {
        (**self).check().await
    }
}

#[async_trait]
pub trait TestTaskStateSeed<TYPES, I, V>: Send
where
    TYPES: NodeType,
    I: TestableNodeImplementation<TYPES>,
    V: Versions,
{
    async fn into_state(
        self: Box<Self>,
        handles: Arc<RwLock<Vec<Node<TYPES, I, V>>>>,
    ) -> AnyTestTaskState<TYPES>;
}

/// A basic task which loops waiting for events to come from `event_receiver`
/// and then handles them using it's state
/// It sends events to other `Task`s through `event_sender`
/// This should be used as the primary building block for long running
/// or medium running tasks (i.e. anything that can't be described as a dependency task)
pub struct TestTask<S: TestTaskState> {
    /// The state of the task.  It is fed events from `event_sender`
    /// and mutates it state ocordingly.  Also it signals the task
    /// if it is complete/should shutdown
    state: S,
    /// Receives events that are broadcast from any task, including itself
    receivers: Vec<Receiver<S::Event>>,
    /// Receiver for test events, used for communication between test tasks.
    test_receiver: Receiver<TestEvent>,
}

#[derive(Clone, Debug)]
pub enum TestEvent {
    Shutdown,
}

impl<S: TestTaskState + Send + 'static> TestTask<S> {
    /// Create a new task
    pub fn new(
        state: S,
        receivers: Vec<Receiver<S::Event>>,
        test_receiver: Receiver<TestEvent>,
    ) -> Self {
        TestTask {
            state,
            receivers,
            test_receiver,
        }
    }

    /// Spawn the task loop, consuming self.  Will continue until
    /// the task reaches some shutdown condition
    pub fn run(mut self) -> JoinHandle<TestResult> {
        spawn(async move {
            loop {
                if let Ok(TestEvent::Shutdown) = self.test_receiver.try_recv() {
                    break self.state.check().await;
                }

                let mut messages = Vec::new();

                for receiver in &mut self.receivers {
                    messages.push(receiver.recv());
                }

                match timeout(Duration::from_millis(2500), select_all(messages)).await {
                    Ok((Ok(input), id, _)) => {
                        let _ = S::handle_event(&mut self.state, (input, id))
                            .await
                            .inspect_err(|e| tracing::error!("{e}"));
                    }
                    Ok((Err(e), _id, _)) => {
                        error!("Error from one channel in test task {:?}", e);
                        sleep(Duration::from_millis(4000)).await;
                    }
                    _ => {}
                };
            }
        })
    }
}

/// Add the network task to handle messages and publish events.
pub async fn add_network_message_test_task<
    TYPES: NodeType,
    V: Versions,
    NET: ConnectedNetwork<TYPES::SignatureKey>,
>(
    internal_event_stream: Sender<Arc<HotShotEvent<TYPES>>>,
    external_event_stream: Sender<Event<TYPES>>,
    upgrade_lock: UpgradeLock<TYPES, V>,
    channel: Arc<NET>,
    public_key: TYPES::SignatureKey,
) -> JoinHandle<()> {
    let net = Arc::clone(&channel);
    let network_state: NetworkMessageTaskState<_> = NetworkMessageTaskState {
        internal_event_stream: internal_event_stream.clone(),
        external_event_stream: external_event_stream.clone(),
        public_key,
        transactions_cache: lru::LruCache::new(NonZeroUsize::new(100_000).unwrap()),
    };

    let network = Arc::clone(&net);
    let mut state = network_state.clone();

    spawn(async move {
        loop {
            // Get the next message from the network
            let message = match network.recv_message().await {
                Ok(message) => message,
                Err(e) => {
                    error!("Failed to receive message: {:?}", e);
                    continue;
                }
            };

            // Deserialize the message
            let deserialized_message: Message<TYPES> =
                match upgrade_lock.deserialize(&message).await {
                    Ok(message) => message,
                    Err(e) => {
                        tracing::error!("Failed to deserialize message: {:?}", e);
                        continue;
                    }
                };

            // Handle the message
            state.handle_message(deserialized_message).await;
        }
    })
}