1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
// Copyright (c) 2021-2024 Espresso Systems (espressosys.com)
// This file is part of the HotShot repository.
// You should have received a copy of the MIT License
// along with the HotShot repository. If not, see <https://mit-license.org/>.
//! Utilities and internals for maintaining a local stake table
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_std::{hash::Hash, sync::Arc, vec, vec::Vec};
use hotshot_types::traits::stake_table::StakeTableError;
use jf_crhf::CRHF;
use jf_utils::canonical;
use primitive_types::U256;
use serde::{Deserialize, Serialize};
use tagged_base64::tagged;
use super::config::{Digest, FieldType, TREE_BRANCH};
use crate::utils::{u256_to_field, ToFields};
/// Common trait bounds for generic key type `K` for [`PersistentMerkleNode`]
pub trait Key:
Clone + CanonicalSerialize + CanonicalDeserialize + PartialEq + Eq + ToFields<FieldType> + Hash
{
}
impl<T> Key for T where
T: Clone
+ CanonicalSerialize
+ CanonicalDeserialize
+ PartialEq
+ Eq
+ ToFields<FieldType>
+ Hash
{
}
/// A persistent merkle tree tailored for the stake table.
/// Generic over the key type `K`
#[derive(Debug, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
#[serde(bound = "K: Key")]
pub(crate) enum PersistentMerkleNode<K: Key> {
/// Empty
Empty,
/// A branch
Branch {
/// field type
#[serde(with = "canonical")]
comm: FieldType,
/// children
children: [Arc<PersistentMerkleNode<K>>; TREE_BRANCH],
/// number of keys
num_keys: usize,
/// total stake
total_stakes: U256,
},
/// A leaf
Leaf {
/// field type
#[serde(with = "canonical")]
comm: FieldType,
/// the key
#[serde(with = "canonical")]
key: K,
/// the value
value: U256,
},
}
/// A compressed Merkle node for Merkle path
#[derive(Debug, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub enum MerklePathEntry<K> {
/// A branch
Branch {
/// Position in tree
pos: usize,
/// Siblings
#[serde(with = "canonical")]
siblings: [FieldType; TREE_BRANCH - 1],
},
/// A leaf
Leaf {
/// the key
key: K,
/// the value
value: U256,
},
}
/// Path from a Merkle root to a leaf
pub type MerklePath<K> = Vec<MerklePathEntry<K>>;
#[derive(Debug, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
/// An existential proof
pub struct MerkleProof<K> {
/// Index for the given key
pub index: usize,
/// A Merkle path for the given leaf
pub path: MerklePath<K>,
}
impl<K: Key> MerkleProof<K> {
/// Returns the height of the tree
pub fn tree_height(&self) -> usize {
self.path.len() - 1
}
/// Returns the index of the given key
pub fn index(&self) -> &usize {
&self.index
}
/// Returns the public key of the associated stake table entry, if there's any.
pub fn key(&self) -> Option<&K> {
match self.path.first() {
Some(MerklePathEntry::Leaf { key, value: _ }) => Some(key),
_ => None,
}
}
/// Returns the stake amount of the associated stake table entry, if there's any.
pub fn value(&self) -> Option<&U256> {
match self.path.first() {
Some(MerklePathEntry::Leaf { key: _, value }) => Some(value),
_ => None,
}
}
/// Returns the associated stake table entry, if there's any.
pub fn key_value(&self) -> Option<(&K, &U256)> {
match self.path.first() {
Some(MerklePathEntry::Leaf { key, value }) => Some((key, value)),
_ => None,
}
}
/// Compute the root of this Merkle proof.
/// # Errors
/// Errors could be triggered by internal Rescue hash, or if the proof is malformed.
pub fn compute_root(&self) -> Result<FieldType, StakeTableError> {
match self.path.first() {
Some(MerklePathEntry::Leaf { key, value }) => {
let mut input = [FieldType::default(); 3];
input[..<K as ToFields<FieldType>>::SIZE]
.copy_from_slice(&(*key).clone().to_fields()[..]);
input[2] = u256_to_field(value);
let init = Digest::evaluate(input).map_err(|_| StakeTableError::RescueError)?[0];
self.path
.iter()
.skip(1)
.try_fold(init, |comm, node| match node {
MerklePathEntry::Branch { pos, siblings } => {
let mut input = [FieldType::from(0); TREE_BRANCH];
input[..*pos].copy_from_slice(&siblings[..*pos]);
input[*pos] = comm;
input[pos + 1..].copy_from_slice(&siblings[*pos..]);
let comm = Digest::evaluate(input)
.map_err(|_| StakeTableError::RescueError)?[0];
Ok(comm)
}
MerklePathEntry::Leaf { .. } => Err(StakeTableError::MalformedProof),
})
}
_ => Err(StakeTableError::MalformedProof),
}
}
/// Verify the Merkle proof against the provided Merkle commitment.
/// # Errors
/// Error could be triggered while computing the root of this proof, or if the verification fails.
pub fn verify(&self, comm: &MerkleCommitment) -> Result<(), StakeTableError> {
if self.tree_height() != comm.tree_height() || !self.compute_root()?.eq(comm.digest()) {
Err(StakeTableError::VerificationError)
} else {
Ok(())
}
}
}
#[tagged("MERKLE_COMM")]
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash, CanonicalSerialize, CanonicalDeserialize)]
/// A succinct commitment for Merkle tree
pub struct MerkleCommitment {
/// Merkle tree digest
comm: FieldType,
/// Height of a tree
height: usize,
/// Number of leaves
size: usize,
}
impl MerkleCommitment {
/// Creates a new merkle commitment
pub fn new(comm: FieldType, height: usize, size: usize) -> Self {
Self { comm, height, size }
}
/// Returns the digest of the tree
pub fn digest(&self) -> &FieldType {
&self.comm
}
/// Returns the height of the tree
pub fn tree_height(&self) -> usize {
self.height
}
/// Returns the number of leaves
pub fn size(&self) -> usize {
self.size
}
}
impl<K: Key> PersistentMerkleNode<K> {
/// Returns the succinct commitment of this subtree
pub fn commitment(&self) -> FieldType {
match self {
PersistentMerkleNode::Empty => FieldType::from(0),
PersistentMerkleNode::Branch {
comm,
children: _,
num_keys: _,
total_stakes: _,
}
| PersistentMerkleNode::Leaf {
comm,
key: _,
value: _,
} => *comm,
}
}
/// Returns the total number of keys in this subtree
pub fn num_keys(&self) -> usize {
match self {
PersistentMerkleNode::Empty => 0,
PersistentMerkleNode::Branch {
comm: _,
children: _,
num_keys,
total_stakes: _,
} => *num_keys,
PersistentMerkleNode::Leaf {
comm: _,
key: _,
value: _,
} => 1,
}
}
/// Returns the total stakes in this subtree
pub fn total_stakes(&self) -> U256 {
match self {
PersistentMerkleNode::Empty => U256::zero(),
PersistentMerkleNode::Branch {
comm: _,
children: _,
num_keys: _,
total_stakes,
} => *total_stakes,
PersistentMerkleNode::Leaf {
comm: _,
key: _,
value,
} => *value,
}
}
/// Returns the stakes withhelded by a public key, None if the key is not registered.
pub fn simple_lookup(&self, height: usize, path: &[usize]) -> Result<U256, StakeTableError> {
match self {
PersistentMerkleNode::Empty => Err(StakeTableError::KeyNotFound),
PersistentMerkleNode::Branch {
comm: _,
children,
num_keys: _,
total_stakes: _,
} => children[path[height - 1]].simple_lookup(height - 1, path),
PersistentMerkleNode::Leaf {
comm: _,
key: _,
value,
} => Ok(*value),
}
}
/// Returns a Merkle proof to the given location
pub fn lookup(&self, height: usize, path: &[usize]) -> Result<MerkleProof<K>, StakeTableError> {
match self {
PersistentMerkleNode::Empty => Err(StakeTableError::KeyNotFound),
PersistentMerkleNode::Branch {
comm: _,
children,
num_keys: _,
total_stakes: _,
} => {
let pos = path[height - 1];
let mut proof = children[pos].lookup(height - 1, path)?;
let siblings = children
.iter()
.enumerate()
.filter(|(i, _)| *i != pos)
.map(|(_, node)| node.commitment())
.collect::<Vec<_>>();
proof.path.push(MerklePathEntry::Branch {
pos,
siblings: siblings.try_into().unwrap(),
});
Ok(proof)
}
PersistentMerkleNode::Leaf {
comm: _,
key,
value,
} => Ok(MerkleProof {
index: from_merkle_path(path),
path: vec![MerklePathEntry::Leaf {
key: key.clone(),
value: *value,
}],
}),
}
}
/// Imagine that the keys in this subtree is sorted, returns the first key such that
/// the prefix sum of withholding stakes is greater or equal the given `stake_number`.
/// Useful for key sampling weighted by withholding stakes
pub fn key_by_stake(&self, mut stake_number: U256) -> Option<(&K, &U256)> {
if stake_number >= self.total_stakes() {
None
} else {
match self {
PersistentMerkleNode::Empty => None,
PersistentMerkleNode::Branch {
comm: _,
children,
num_keys: _,
total_stakes: _,
} => {
let mut ptr = 0;
while stake_number >= children[ptr].total_stakes() {
stake_number -= children[ptr].total_stakes();
ptr += 1;
}
children[ptr].key_by_stake(stake_number)
}
PersistentMerkleNode::Leaf {
comm: _,
key,
value,
} => Some((key, value)),
}
}
}
/// Insert a new `key` into the Merkle tree
pub fn register(
&self,
height: usize,
path: &[usize],
key: &K,
value: U256,
) -> Result<Arc<Self>, StakeTableError> {
if height == 0 {
if matches!(self, PersistentMerkleNode::Empty) {
let mut input = [FieldType::default(); 3];
input[..<K as ToFields<FieldType>>::SIZE]
.copy_from_slice(&(*key).clone().to_fields()[..]);
input[2] = u256_to_field(&value);
Ok(Arc::new(PersistentMerkleNode::Leaf {
comm: Digest::evaluate(input).map_err(|_| StakeTableError::RescueError)?[0],
key: key.clone(),
value,
}))
} else {
Err(StakeTableError::ExistingKey)
}
} else {
let mut children = if let &PersistentMerkleNode::Branch {
comm: _,
children,
num_keys: _,
total_stakes: _,
} = &self
{
children.clone()
} else {
[0; TREE_BRANCH].map(|_| Arc::new(PersistentMerkleNode::Empty))
};
children[path[height - 1]] =
children[path[height - 1]].register(height - 1, path, key, value)?;
let num_keys = children.iter().map(|child| child.num_keys()).sum();
let total_stakes = children
.iter()
.map(|child| child.total_stakes())
.fold(U256::zero(), |sum, val| sum + val);
let comm = Digest::evaluate(children.clone().map(|child| child.commitment()))
.map_err(|_| StakeTableError::RescueError)?[0];
Ok(Arc::new(PersistentMerkleNode::Branch {
comm,
children,
num_keys,
total_stakes,
}))
}
}
/// Update the stake of the `key` with `(negative ? -1 : 1) * delta`.
/// Return the updated stake
pub fn update(
&self,
height: usize,
path: &[usize],
key: &K,
delta: U256,
negative: bool,
) -> Result<(Arc<Self>, U256), StakeTableError> {
match self {
PersistentMerkleNode::Empty => Err(StakeTableError::KeyNotFound),
PersistentMerkleNode::Branch {
comm: _,
children,
num_keys: _,
total_stakes: _,
} => {
let mut children = children.clone();
let value: U256;
(children[path[height - 1]], value) =
children[path[height - 1]].update(height - 1, path, key, delta, negative)?;
let num_keys = children.iter().map(|child| child.num_keys()).sum();
let total_stakes = children
.iter()
.map(|child| child.total_stakes())
.fold(U256::zero(), |sum, val| sum + val);
let comm = Digest::evaluate(children.clone().map(|child| child.commitment()))
.map_err(|_| StakeTableError::RescueError)?[0];
Ok((
Arc::new(PersistentMerkleNode::Branch {
comm,
children,
num_keys,
total_stakes,
}),
value,
))
}
PersistentMerkleNode::Leaf {
comm: _,
key: node_key,
value: old_value,
} => {
if key == node_key {
let value = if negative {
old_value
.checked_sub(delta)
.ok_or(StakeTableError::InsufficientFund)
} else {
old_value
.checked_add(delta)
.ok_or(StakeTableError::StakeOverflow)
}?;
let mut input = [FieldType::default(); 3];
input[..<K as ToFields<FieldType>>::SIZE]
.copy_from_slice(&(*key).clone().to_fields()[..]);
input[2] = u256_to_field(&value);
Ok((
Arc::new(PersistentMerkleNode::Leaf {
comm: Digest::evaluate(input)
.map_err(|_| StakeTableError::RescueError)?[0],
key: key.clone(),
value,
}),
value,
))
} else {
Err(StakeTableError::MismatchedKey)
}
}
}
}
/// Set the stake of `key` to be `value`.
/// Return the previous stake
pub fn set_value(
&self,
height: usize,
path: &[usize],
key: &K,
value: U256,
) -> Result<(Arc<Self>, U256), StakeTableError> {
match self {
PersistentMerkleNode::Empty => Err(StakeTableError::KeyNotFound),
PersistentMerkleNode::Branch {
comm: _,
children,
num_keys: _,
total_stakes: _,
} => {
let mut children = children.clone();
let old_value: U256;
(children[path[height - 1]], old_value) =
children[path[height - 1]].set_value(height - 1, path, key, value)?;
let num_keys = children.iter().map(|child| child.num_keys()).sum();
if num_keys == 0 {
Ok((Arc::new(PersistentMerkleNode::Empty), value))
} else {
let total_stakes = children
.iter()
.map(|child| child.total_stakes())
.fold(U256::zero(), |sum, val| sum + val);
let comm = Digest::evaluate(children.clone().map(|child| child.commitment()))
.map_err(|_| StakeTableError::RescueError)?[0];
Ok((
Arc::new(PersistentMerkleNode::Branch {
comm,
children,
num_keys,
total_stakes,
}),
old_value,
))
}
}
PersistentMerkleNode::Leaf {
comm: _,
key: cur_key,
value: old_value,
} => {
if key == cur_key {
let mut input = [FieldType::default(); 3];
input[..<K as ToFields<FieldType>>::SIZE]
.copy_from_slice(&(*key).clone().to_fields()[..]);
input[2] = u256_to_field(&value);
Ok((
Arc::new(PersistentMerkleNode::Leaf {
comm: Digest::evaluate(input)
.map_err(|_| StakeTableError::RescueError)?[0],
key: key.clone(),
value,
}),
*old_value,
))
} else {
Err(StakeTableError::MismatchedKey)
}
}
}
}
}
/// An owning iterator over the (key, value) entries of a `PersistentMerkleNode`
/// Traverse using post-order: children from left to right, finally visit the current.
pub struct IntoIter<K: Key> {
/// The unvisited key values
unvisited: Vec<Arc<PersistentMerkleNode<K>>>,
}
impl<K: Key> IntoIter<K> {
/// create a new merkle tree iterator from a `root`.
/// This (abstract) `root` can be an internal node of a larger tree, our iterator
/// will iterate over all of its children.
pub(crate) fn new(root: Arc<PersistentMerkleNode<K>>) -> Self {
Self {
unvisited: vec![root],
}
}
}
impl<K: Key> Iterator for IntoIter<K> {
type Item = (K, U256, ());
fn next(&mut self) -> Option<Self::Item> {
if self.unvisited.is_empty() {
return None;
}
// This unwrap always succeed because `unvisited` is nonempty
let visiting = (*self.unvisited.pop().unwrap()).clone();
match visiting {
PersistentMerkleNode::Empty => None,
PersistentMerkleNode::Branch {
comm: _,
children,
num_keys: _,
total_stakes: _,
} => {
// put the left-most child to the last, so it is visited first.
self.unvisited.extend(children.into_iter().rev());
self.next()
}
PersistentMerkleNode::Leaf {
comm: _,
key,
value,
} => Some((key, value, ())),
}
}
}
impl<K: Key> IntoIterator for PersistentMerkleNode<K> {
type Item = (K, U256, ());
type IntoIter = self::IntoIter<K>;
fn into_iter(self) -> Self::IntoIter {
Self::IntoIter::new(Arc::new(self))
}
}
/// Convert an index to a list of Merkle path branches
pub fn to_merkle_path(idx: usize, height: usize) -> Vec<usize> {
let mut pos = idx;
let mut ret: Vec<usize> = vec![];
for _ in 0..height {
ret.push(pos % TREE_BRANCH);
pos /= TREE_BRANCH;
}
ret
}
/// Convert a list of Merkle path branches back to an index
pub fn from_merkle_path(path: &[usize]) -> usize {
path.iter()
.fold((0, 1), |(pos, mul), branch| {
(pos + mul * branch, mul * TREE_BRANCH)
})
.0
}
#[cfg(test)]
mod tests {
use ark_std::{
rand::{Rng, RngCore},
sync::Arc,
vec,
vec::Vec,
};
use jf_utils::test_rng;
use primitive_types::U256;
use super::{super::config, to_merkle_path, PersistentMerkleNode};
type Key = ark_bn254::Fq;
#[test]
fn crypto_test_persistent_merkle_tree() {
let height = 3;
let mut roots = vec![Arc::new(PersistentMerkleNode::<Key>::Empty)];
let path = (0..10)
.map(|idx| to_merkle_path(idx, height))
.collect::<Vec<_>>();
let keys = (0..10).map(Key::from).collect::<Vec<_>>();
// Insert key (0..10) with associated value 100 to the persistent merkle tree
for (i, key) in keys.iter().enumerate() {
roots.push(
roots
.last()
.unwrap()
.register(height, &path[i], key, U256::from(100))
.unwrap(),
);
}
// Check that if the insertion is perform correctly
for i in 0..10 {
assert!(roots[i].simple_lookup(height, &path[i]).is_err());
assert_eq!(i, roots[i].num_keys());
assert_eq!(
U256::from((i as u64 + 1) * 100),
roots[i + 1].total_stakes()
);
assert_eq!(
U256::from(100),
roots[i + 1].simple_lookup(height, &path[i]).unwrap()
);
}
// test key_by_stake
keys.iter().enumerate().for_each(|(i, key)| {
assert_eq!(
key,
roots
.last()
.unwrap()
.key_by_stake(U256::from(i as u64 * 100 + i as u64 + 1))
.unwrap()
.0
);
});
// test for `lookup` and Merkle proof
for i in 0..10 {
let proof = roots.last().unwrap().lookup(height, &path[i]).unwrap();
assert_eq!(height, proof.tree_height());
assert_eq!(&keys[i], proof.key().unwrap());
assert_eq!(&U256::from(100), proof.value().unwrap());
assert_eq!(
roots.last().unwrap().commitment(),
proof.compute_root().unwrap()
);
}
// test for `set_value`
// `set_value` with wrong key should fail
assert!(roots
.last()
.unwrap()
.set_value(height, &path[2], &keys[1], U256::from(100))
.is_err());
// A successful `set_value`
let (new_root, value) = roots
.last()
.unwrap()
.set_value(height, &path[2], &keys[2], U256::from(90))
.unwrap();
roots.push(new_root);
assert_eq!(U256::from(100), value);
assert_eq!(
U256::from(90),
roots
.last()
.unwrap()
.simple_lookup(height, &path[2])
.unwrap()
);
assert_eq!(U256::from(990), roots.last().unwrap().total_stakes());
// test for `update`
// `update` with a wrong key should fail
assert!(roots
.last()
.unwrap()
.update(height, &path[3], &keys[0], U256::from(10), false)
.is_err());
// `update` that results in a negative stake should fail
assert!(roots
.last()
.unwrap()
.update(height, &path[3], &keys[3], U256::from(200), true)
.is_err());
// A successful `update`
let (new_root, value) = roots
.last()
.unwrap()
.update(height, &path[2], &keys[2], U256::from(10), false)
.unwrap();
roots.push(new_root);
assert_eq!(U256::from(100), value);
assert_eq!(
value,
roots
.last()
.unwrap()
.simple_lookup(height, &path[2])
.unwrap()
);
assert_eq!(U256::from(1000), roots.last().unwrap().total_stakes());
}
#[test]
fn crypto_test_mt_iter() {
let height = 3;
let capacity = config::TREE_BRANCH.pow(height);
let mut rng = test_rng();
for _ in 0..5 {
let num_keys = rng.gen_range(1..capacity);
let keys: Vec<Key> = (0..num_keys).map(|i| Key::from(i as u64)).collect();
let paths = (0..num_keys)
.map(|idx| to_merkle_path(idx, height as usize))
.collect::<Vec<_>>();
let amounts: Vec<U256> = (0..num_keys).map(|_| U256::from(rng.next_u64())).collect();
// register all `num_keys` of (key, amount) pair.
let mut root = Arc::new(PersistentMerkleNode::<Key>::Empty);
for i in 0..num_keys {
root = root
.register(height as usize, &paths[i], &keys[i], amounts[i])
.unwrap();
}
for (i, (k, v, ())) in (*root).clone().into_iter().enumerate() {
assert_eq!((k, v), (keys[i], amounts[i]));
}
}
}
}